This site uses cookies. By continuing to use this site you consent to our use of cookies. Close
MUJO Jobs
Sign In Register Advertise With Us
menu
  • clear
  • Home
  • About Us
  • Find a Job
  • Career Advice
  • Job Alerts
  • Contact Us
  • Sign In Register Advertise With Us
    • Login
    • Register
  • Home
  • Jobs
  • Job Alerts
  • News & Advice
Hiring?
More options
chevron_leftBack
  • 11 Dec 2025
  • - Charlie King

New antibiotic for drug-resistant bacteria found hiding in plain sight

Chemists from the University of Warwick and Monash University have discovered a promising new antibiotic that shows activity against drug-resistant bacterial pathogens, including MRSA and VRE

Antimicrobial resistance (AMR) is one of the world’s most urgent health challenges, with the WHO’s new report showing there are ‘too few antibacterials in the pipeline’. Most of the ‘low-hanging fruit’ has already been found, and the limited commercial incentives deter investment in antibiotic discovery.

In a new study published in the Journal of the American Chemical Society, researchers from the Monash Warwick Alliance Combatting Emerging Superbug Threats Initiative have discovered a promising new antibiotic – pre-methylenomycin C lactone. The newly discovered antibiotic was ‘hiding in plain sight’ — as an intermediate chemical in the natural process that produces the well-known antibiotic methylenomycin A.

Co-lead author of the study, Professor Greg Challis, in the Department of Chemistry at the University of Warwick, and Biomedicine Discovery Institute at Monash University says: “Methylenomycin A was originally discovered 50 years ago and while it has been synthesized several times, no-one appears to have tested the synthetic intermediates for antimicrobial activity! By deleting biosynthetic genes, we discovered two previously unknown biosynthetic intermediates, both of which are much more potent antibiotics than methylenomycin A itself.”

When tested for antimicrobial activity, one of the intermediates, pre-methylenomycin C lactone, was shown to be over 100 times more active against diverse Gram-positive bacteria than the original antibiotic methylenomycin A. Specifically, it was shown to be effective against S. aureus and E. faecium, the bacterial species behind Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE) respectively. 

Co-lead author Dr. Lona Alkhalaf, Assistant Professor, University of Warwick adds: “Remarkably, the bacterium that makes methylenomycin A and pre-methylenomycin C lactone — Streptomyces coelicolor — is a model antibiotic-producing species that’s been studied extensively since the 1950s. Finding a new antibiotic in such a familiar organism was a real surprise.” 

“It looks like S. coelicolor originally evolved to produce a powerful antibiotic (pre-methylenomycin C lactone), but over time has changed it into methylenomycin A — a much weaker antibiotic that may play a different role in the bacterium’s biology.”

Importantly, the researchers could not detect any emergence of resistance to pre-methylenomycin C lactone in Enterococcus bacteria under conditions where vancomycin resistance is observed. Vancomycin is a “last line” treatment for Enterococcus infection, so this finding is especially promising for VRE, a WHO High Priority Pathogen. 

Professor Challis continues: “This discovery suggests a new paradigm for antibiotic discovery. By identifying and testing intermediates in the pathways to diverse natural compounds, we may find potent new antibiotics with more resilience to resistance that will aid us in the fight against AMR.”

The next step in the development of the antibiotic will be pre-clinical testing. In a coordinated publication earlier this year in the Journal of Organic Chemistry, a team led by Monash collaborating with the Warwick team and funded by the Monash Warwick Alliance Combatting Emerging Superbug Threats initiative reported a scalable synthesis of pre-methylenomycin C lactone, paving the way for further research. 

Professor David Lupton, School of Chemistry, Monash University who led the synthesis work says: “This synthetic route should enable the creation of diverse analogues that can be used to probe the structure−activity relationship and mechanism of action for pre-methylenomycin C lactone. The Centre to Impact AMR at Monash gives us a great platform to take this promising antimicrobial forward.” 

With its simple structure, potent activity, difficult to resist profile, and scalable synthesis, pre-methylenomycin C lactone represents a promising new candidate that could potentially help to save some of the 1.1 million people who are the victims of AMR every year. 

Related Career Advice

  • 11 Dec 2025
  • - Charlie King

New antibiotic for drug-resistant bacteria found hiding in plain sight

Chemists from the University of Warwick and Monash University have discovered a promising new antibiotic that shows activity against drug-resistant bacterial pathogens, including MRSA and VRE

Antimicrobial resistance (AMR) is one of the world’s most urgent health challenges, with the WHO’s new report showing there are ‘too few antibacterials in the pipeline’. Most of the ‘low-hanging fruit’ has already been found, and the limited commercial incentives deter investment in antibiotic discovery.

In a new study published in the Journal of the American Chemical Society, researchers from the Monash Warwick Alliance Combatting Emerging Superbug Threats Initiative have discovered a promising new antibiotic – pre-methylenomycin C lactone. The newly discovered antibiotic was ‘hiding in plain sight’ — as an intermediate chemical in the natural process that produces the well-known antibiotic methylenomycin A.

Co-lead author of the study, Professor Greg Challis, in the Department of Chemistry at the University of Warwick, and Biomedicine Discovery Institute at Monash University says: “Methylenomycin A was originally discovered 50 years ago and while it has been synthesized several times, no-one appears to have tested the synthetic intermediates for antimicrobial activity! By deleting biosynthetic genes, we discovered two previously unknown biosynthetic intermediates, both of which are much more potent antibiotics than methylenomycin A itself.”

When tested for antimicrobial activity, one of the intermediates, pre-methylenomycin C lactone, was shown to be over 100 times more active against diverse Gram-positive bacteria than the original antibiotic methylenomycin A. Specifically, it was shown to be effective against S. aureus and E. faecium, the bacterial species behind Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE) respectively. 

Co-lead author Dr. Lona Alkhalaf, Assistant Professor, University of Warwick adds: “Remarkably, the bacterium that makes methylenomycin A and pre-methylenomycin C lactone — Streptomyces coelicolor — is a model antibiotic-producing species that’s been studied extensively since the 1950s. Finding a new antibiotic in such a familiar organism was a real surprise.” 

“It looks like S. coelicolor originally evolved to produce a powerful antibiotic (pre-methylenomycin C lactone), but over time has changed it into methylenomycin A — a much weaker antibiotic that may play a different role in the bacterium’s biology.”

Importantly, the researchers could not detect any emergence of resistance to pre-methylenomycin C lactone in Enterococcus bacteria under conditions where vancomycin resistance is observed. Vancomycin is a “last line” treatment for Enterococcus infection, so this finding is especially promising for VRE, a WHO High Priority Pathogen. 

Professor Challis continues: “This discovery suggests a new paradigm for antibiotic discovery. By identifying and testing intermediates in the pathways to diverse natural compounds, we may find potent new antibiotics with more resilience to resistance that will aid us in the fight against AMR.”

The next step in the development of the antibiotic will be pre-clinical testing. In a coordinated publication earlier this year in the Journal of Organic Chemistry, a team led by Monash collaborating with the Warwick team and funded by the Monash Warwick Alliance Combatting Emerging Superbug Threats initiative reported a scalable synthesis of pre-methylenomycin C lactone, paving the way for further research. 

Professor David Lupton, School of Chemistry, Monash University who led the synthesis work says: “This synthetic route should enable the creation of diverse analogues that can be used to probe the structure−activity relationship and mechanism of action for pre-methylenomycin C lactone. The Centre to Impact AMR at Monash gives us a great platform to take this promising antimicrobial forward.” 

With its simple structure, potent activity, difficult to resist profile, and scalable synthesis, pre-methylenomycin C lactone represents a promising new candidate that could potentially help to save some of the 1.1 million people who are the victims of AMR every year. 

  • 11 Dec 2025
  • - Charlie King

New antibiotic for drug-resistant bacteria found hiding in plain sight

Chemists from the University of Warwick and Monash University have discovered a promising new antibiotic that shows activity against drug-resistant bacterial pathogens, including MRSA and VRE

Antimicrobial resistance (AMR) is one of the world’s most urgent health challenges, with the WHO’s new report showing there are ‘too few antibacterials in the pipeline’. Most of the ‘low-hanging fruit’ has already been found, and the limited commercial incentives deter investment in antibiotic discovery.

In a new study published in the Journal of the American Chemical Society, researchers from the Monash Warwick Alliance Combatting Emerging Superbug Threats Initiative have discovered a promising new antibiotic – pre-methylenomycin C lactone. The newly discovered antibiotic was ‘hiding in plain sight’ — as an intermediate chemical in the natural process that produces the well-known antibiotic methylenomycin A.

Co-lead author of the study, Professor Greg Challis, in the Department of Chemistry at the University of Warwick, and Biomedicine Discovery Institute at Monash University says: “Methylenomycin A was originally discovered 50 years ago and while it has been synthesized several times, no-one appears to have tested the synthetic intermediates for antimicrobial activity! By deleting biosynthetic genes, we discovered two previously unknown biosynthetic intermediates, both of which are much more potent antibiotics than methylenomycin A itself.”

When tested for antimicrobial activity, one of the intermediates, pre-methylenomycin C lactone, was shown to be over 100 times more active against diverse Gram-positive bacteria than the original antibiotic methylenomycin A. Specifically, it was shown to be effective against S. aureus and E. faecium, the bacterial species behind Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE) respectively. 

Co-lead author Dr. Lona Alkhalaf, Assistant Professor, University of Warwick adds: “Remarkably, the bacterium that makes methylenomycin A and pre-methylenomycin C lactone — Streptomyces coelicolor — is a model antibiotic-producing species that’s been studied extensively since the 1950s. Finding a new antibiotic in such a familiar organism was a real surprise.” 

“It looks like S. coelicolor originally evolved to produce a powerful antibiotic (pre-methylenomycin C lactone), but over time has changed it into methylenomycin A — a much weaker antibiotic that may play a different role in the bacterium’s biology.”

Importantly, the researchers could not detect any emergence of resistance to pre-methylenomycin C lactone in Enterococcus bacteria under conditions where vancomycin resistance is observed. Vancomycin is a “last line” treatment for Enterococcus infection, so this finding is especially promising for VRE, a WHO High Priority Pathogen. 

Professor Challis continues: “This discovery suggests a new paradigm for antibiotic discovery. By identifying and testing intermediates in the pathways to diverse natural compounds, we may find potent new antibiotics with more resilience to resistance that will aid us in the fight against AMR.”

The next step in the development of the antibiotic will be pre-clinical testing. In a coordinated publication earlier this year in the Journal of Organic Chemistry, a team led by Monash collaborating with the Warwick team and funded by the Monash Warwick Alliance Combatting Emerging Superbug Threats initiative reported a scalable synthesis of pre-methylenomycin C lactone, paving the way for further research. 

Professor David Lupton, School of Chemistry, Monash University who led the synthesis work says: “This synthetic route should enable the creation of diverse analogues that can be used to probe the structure−activity relationship and mechanism of action for pre-methylenomycin C lactone. The Centre to Impact AMR at Monash gives us a great platform to take this promising antimicrobial forward.” 

With its simple structure, potent activity, difficult to resist profile, and scalable synthesis, pre-methylenomycin C lactone represents a promising new candidate that could potentially help to save some of the 1.1 million people who are the victims of AMR every year. 

mujo.com is brought to you by International Medical Information. For more details. visit http://www.medicalimi.com

Disclaimer: All information on this site has been collated by healthcare professionals from around the globe. Where every possible step has been taken to ensure its accu-racy, MedicalUpdateOnline cannot accept responsibility for the authenticity of the content matter.

Copyright: The copyright of the material on this site rests with the author unless otherwise indicated. It is a breach of copyright to use any material from this site without prior written consent.

Jobs
Jobs
  • Upload CV
  • Find a job
  • Job alerts
  • Career advice
  • Recruiter A-Z
Candidate
More Info
  • Sign in
  • Register
Recruiter
  • Advertise with us
  • Sign in
  • Register
More Info
Community
  • About us
  • Terms and Conditions
  • Privacy policy

Subscribe for job alerts

If you're a healthcare professional, you can sign up for our job alerts to receive high-quality opportunities in medicine, pharmaceuticals, and healthcare. Get the latest jobs and updates across a broad range of specialties delivered straight to your inbox.

Copyright © ICR (UK) Limited t/a International Medical Information (IMI). Registered in the UK Company no. 05894351

Powered by Talenetic Job Board Software

arrow_upward